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Make Measurement Hands-On

When teaching about perimeter, area, surface area, volume, and their units, it is important to
provide students with frequent hands-on experiences measuring real two-dimensional and three-
dimensional objects. If one looks at textbooks, handouts, or online activities about measurement,
students are typically presented with shapes oriented in the most
familiar way (e.g., the base of a triangle is horizontal and below the
rest of the shape), with all needed lengths labeled, and with no

unneeded lengths provided. See a typical example of this kind of

exercise at right. This kind of work does not develop understanding or

skills or demonstrate that a student can apply either in unfamiliar situations. The introduction to
this unit includes a Materials List on the second page that suggests a range of objects students can
use to practice surface area and volume measurements. The Area Exercises Collection (pdf doc)
consists of a rather random assortment of problems whose chief characteristic is that they differ
from the above example in some important way. Many include no measurements and students
need to measure any useful lengths themselves. All students should have metric rulers in class
and at home that they can use. As they work, you will discover some students who don’t readily
visualize where a triangle’s altitude (height) is. They may just measure a side or not draw the height
perpendicular to the base. | have taught students who struggle to picture and draw right angles or
who do not know how to align a ruler correctly. This more varied work helps diagnose and
remediate such gaps. The exercise collection is available in Word document form (which you can
also open in a GoogleDoc) so that you can skim the collection and use problems that meet your
needs for a handout or other assessment. It is not intended as a coherent handout itself. In
addition to ruler, pencil, and paper activities, work with random physical objects provides great

opportunities to help students organize their work and learn how to deal with

complex shapes that are pieces and parts of more familiar ones. Do they see a |

L4

ring as a circle within a circle or an L as two rectangles or two trapezoids? o
&

The remainder of this discussion provides background information, much of which is foundational
information for students, with activities for students interspersed.

Units

Measurements without units are typically meaningless. If a student provides me with a unitless
answer, | will ask them to ask me my height. When they do, | just make up number like 53. | point
out that they don’t know if my answer is correct or not, because they don’t know 53 of what.
Students tend to see units, at best, as something one tacks on after finishing calculations, rather
than as a guide to those calculations. See the Making Math Numeracy Estimation and Units

materials for ways to help students see how units inform our calculations.
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Not only can units give meaning to measurements, but they also help us understand perimeter,
area, and volume formulas. Note these examples for which constants are unitless and variables
have units of length:

Perimeter of a rectangle = 2W + 2L. A unitless “2” times a length is just a different length and
then a length, 2W, plus a length, 2L, is still a length, so our answer is still just a one-
dimensional perimeter.

Area of arectangle is WH or length times length, which is length2, a unit of area. Even when

a formula looks more complicated, it still will land at the right dimension: a formula for the

area of a trapezoid is % (base;+base,)h, or (unitless constant)(length+length)length which

simplifies to (length)length or lengthz.

Here is a messy one. The volume of a truncated cone with height 4 and radii for
the two bases Rand ris %T[h(RZ + Rr +1r2). % and m are unitless, % is a length,

and each term in the parentheses is quadratic (squared) and add up to a
quadratic term. So length times quadratic is cubic, or volume.

In each of the above examples, we see that the dimension for what is being measured naturally
arises from the structure of the formula and the variables involved. This is an important concept
that shows up throughout mathematics and physics.

Activity 1: Share a couple of examples and then ask students to perform a unit analysis on
different area, surface area, and volume formulas and it will help them both understand and
remember them.

In the United States, we are forced, just for practical everyday reasons, to teach customary units
(e.g., feet, miles, gallons, etc.), but we should cover these are quickly as possible and focus on
metric measure, which is consistent (every conversion factor is a power of 10), almost universally
adopted in the world, and required for all work in science. Introduce students to the most common
metric units (deci 107, centi 102, milli 103, micro 10, and nano 10° on the small end and kilo 103,
mega 10, giga 10°, and tera 10'? on the high end). There are exercises and activities that expand
students’ skills with metric measure in the Numeracy: Understanding Small and Large Quantities

unit.

Activity 2: To help students understand how units build dimensionally and how to compare
different units, you can do the Personal Units activity and then the Trimetric Units handout that are
in this 2-D shapes sequence. Both of these activities are about understanding the conceptual basis

of units free from anything that needs memorizing. Any unit of length can be the basis for length,
area, and volume, and any unit can be the basis for a whole range of units when supplemented with
a consistent set of prefixes.

Shapes

Before heading into work with CAD software, some geometry vocabulary should be reviewed (or
introduced). When presenting definitions, be sure to emphasize their inclusive nature. For
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example, students often come out of elementary school thinking a rectangle has to have different
length sides. That is, there are squares and there are rectangles, and the two sets are distinct. But
their definitions make it clear that all squares are also rectangles. Similarly, all equilateral triangles
are also isosceles and all parallelograms are trapezoids. These inclusive relationships make it
easier to find patterns and state properties without having to incorporate unnecessary exceptions.
Below are the main definitions for two-dimensional figures.

A polygon is a closed, planar (2-D) figure made up of line segments connected at their
endpoints.

Quadrilaterals (quad means four, lateral means side) are four-sided polygons.
Atriangle is a three-sided polygon.

Other polygons are pentagons (5 sides), hexagons (6), heptagons (7), octagons (8),
nonagons (9), decagons (10), and dodecagons (12).

Polygons can be convex (each segment connecting
any two points in the shape also lies in the shape) or
concave, which is the same as non-convex (has a
dent or “cave”).

There are many triangle types, including:

e Right - A quadrilateralis a square if all four sides are congruent and all four angles are
congruent.

e |sosceles - Atriangle with two or more congruent sides.

e Equilateral - A triangle (or any polygon) where all sides are congruent.
e Scalene - All sides have different lengths.

e Equiangular - Any polygon with all angles congruent.

e Acute-Atriangle is acute if all three angles are acute (less than 90°).

e Obtuse - Atriangle is obtuse if one of its angles is obtuse (more than 90°).

There are many types of special quadrilaterals (ones with special properties). Familiar ones
include:

e Square - A quadrilateralis a square if all four sides are congruent and all four angles are
congruent (it is equilateral and equiangular).

e Parallelogram — A quadrilateral is a parallelogram if both pairs of opposite sides are
parallel.

e Rectangle — A quadrilateralis a rectangle if all four angles are congruent.
e Rhombus - A quadrilateral is a rhombus if all four sides are congruent.
e Trapezoid - A quadrilateral is a trapezoid if at least one pair of opposite sides is parallel.

e |sosceles Trapezoid — A quadrilateral is an isosceles trapezoid if at least one pair of
opposite sides is parallel and the base angles (two adjacent angles sharing one of the
parallel sides) are congruent.

e Kite — A quadrilateral is a kite if it consists of two distinct (non-overlapping) pairs of
adjacent congruent sides.



Moving on from polygons, we have:

e Circle-Acircle is the set of all points equidistant from a center point. That
equidistance is the length of the radius. The center of the circle is not a point of the
circle. The circle is just the circumference. A circle plus its interior is called a disc.

e Ellipse - Ellipses have many interesting geometric
definitions. The simplest for now is a circle that —_— -
has been scaled non-uniformly (stretched in one
direction).

Area Formulas Derived by Dissection and Rearrangement

Because a square tiles a region without overlap, it is the simplest and most natural choice for a unit
of area. Rows of squares lead to the formula for rectangles: L - W. With the rectangle area formula
as a foundation, other area formulas follow.

We can construct a rectangle around any right triangle to demonstrate that
the area of the triangle is %2 of the enclosing rectangle (image at right). So,
we have area of a right triangle = “2BH.

All triangles have at least one internal altitude that divides them into

two right triangles. In the diagram at right, the original blue triangle has

been subdivided into two right triangles. Using the above formula for

right triangles, the total area = /2b;h + 2bh = Y2(b; + b2)h = 2Bh. So, all

triangles work with the same formula. If we want to show that all three

bases can be used to find the area for obtuse triangles, we would b; b>

&

need to subtract, rather than add, the areas of two right triangles. See < B

v

if you can set that proof up.

The formula for parallelograms can be developed in several ways. One is to rearrange the shape to
make a rectangle by moving the triangle on one side to the other (a rigorous proof would include
showing how everything works out to make the sides straight and the angles right).

r = I y;
/ %i/Q:li/‘/,' H

B
So, the area of the parallelogram is the same as the area of the resulting rectangle which is BH.

The formula for both trapezoids and parallelograms can be found with a B

simple dissection into two triangles using a diagonal. This approach
yields area = 2(%2BH) or BH. For a trapezoid Y2B;H + Y2B>H = Y4(B;+B2)H. H
This dissection approach requires less additional justification than for the

rearrangement proofs.



Cavalieri’s Principle

While area formulas are often demonstrated in classes as described above. Thinking about cross-
sections is a powerful way to compare areas and volumes that emphasizes the relationship
between dimensions. This approach is fruitful in working with CAD software and facilitates
understanding of the key operations of calculus: integration and differentiation.

We will start with a volume example of Cavalieri’s
Principle: Begin with two solids bounded by a pair of
parallel planes (shown as bounding lines above and
below in the image at right). Consider each plane
parallel to those two planes (picture it sweeping from
the bottom to the top as if it were scanning both
solids) and the areas of the cross sections of those

solids in that plane. If the area is the same for all
cross-section pairs in each plane, then the the two solids have the same volume. The above image
is part of a classic derivation of the formula for the volume of a cylinder (the pyramid is already
known to be 1/;-area of Base- Height which leads to the same formula for cylinders). The
proportions of the shapes are chosen so that at each level, the square cross section and circle
cross section have the same area, so the two solids have the same volume.

Hands-on work with objects can help students understand this theorem. In the first picture below,
we see a cylinder made of 14 pennies (we are old enough to still remember pennies). Think of each
penny as a cross section (even though real cross-sections have no thickness —they are two-
dimensional). The other two penny stacks are the same height as the cylinder and each cross
section has the same circular area at each height as the first, so they all have the same volume of
14 pennies (with penny as a unit of volume since it has so little worth monetarily) even though the
latter two are skewed and, well, wonky. It is clear, however, that they do not all have the same
surface areas. The edges of all pennies are exposed in all cases as are the top and bottom circular
faces, but in the final two images, we can see additional parts of the faces of the coins increasing
the overall surface area. The same would be true if we looked at an oblique (slanted) cylinder.
Slanting a figure does stretch and increase its boundary, but leaves the amount of inside (volume)

unchanged.
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Students can build their own examples with unit cubes. The
image on the left is a rectangular solid, or box, with a volume of 3
cm*4cm*4cm =48 cm?. The object to the right has skewed
layers, but each horizontal cross section still has the same area
as in the box, so the volume is unchanged. The surface area is
increased because it has all of the original exposed faces as well
as the now-exposed steps on the left and right sides.

Activity 2: Students can be helped to further understand the two-dimensional nature of cross-
sections by making shapes such as cubes, spheres, cylinders, and tetrahedra (triangular pyramids
shown below) with Playdoh and then using thread or a plastic knife (and a sort of back and forth
sawing motion to make clean cuts) to expose internal faces of each shape (see avideo
demonstration here). Round and square cookie cutters might also work well, but | haven’t tried
those. The cross section is not the playdoh portion, it is the 2-D surface that has been exposed.
Students should be asked to identify and record as many distinct cross-sections as they can. They
should try to identify types of triangles and quadrilaterals specifically. Working with cylinders,
students can find circular and elliptical cross-sections (as well as portions of ellipses if the planar
cut emerges through a base). Cross sections of a tetrahedron can produce different types of
triangles (isoceles, equilateral, scalene) as well as a square (can you figure out how?). Cross
sections of a cube are many (different types of triangles, quadrilaterals, pentagons, and even a

hexagon, but don’t tell students about any of these — ask them to experiment and record their
discoveries and then share out afterward).

Cavalieri’s Principle for Area

In place of dissection, area formulas can be understood e s m s
through the two-dimensional version of Cavilieri’s Ly s s s
principle: If two areas are bounded by a pair of parallel LA S S S S
lines and each line parallel to these bounds intersects the » »
areas with segments of the same length, then the areas N N
are equal. . .

The illustration at right shows how triangles with equal
bases and heights have matching cross sections (this
could be proven using similarity or coordinate geometry),

so any of them could be compared with a right triangle of
the same dimensions to verify that 4 = /2BH for all
triangles. Similarly, one can compare the horizontal
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segments that comprise a rectangle and parallelogram with the same base and height to show that
their areas are equal.

There are demonstrations that suggest the formula for the area of circles that involve dissection.
The simplestis to cut it into many wedges and then rearrange them into what looks like a slightly
lumpy parallelogram. That shape is as high as the wedge’s radius and the lumpy tops and bottoms
are half of the circumference yielding A ~ nrr - r = mr?. The more wedges we cut the original circle
into, the less curvature is in the arc of each wedge and the closer the reassembled shape
approximates a parallelogram (or rectangle with the same dimensions).

K - T,

Another dissection involves dividing a circle into concentric rings, cutting the rings, and unfolding

them and, to the extent possible, straightening them. We cannot unbend them into rectangles
while preserving their area, because the inside circumference of each ring is shorter than the
outside circumference. But, if we use a lot of rings, the unfolded rings better approximate
rectangles. If we break the original area into an infinite number of nested circles (each with no

‘ |
\
< r >

width), then those open up into a triangle made of an infinite number of segments. The triangle has

a

<

a base of r and a height equal to the outermost disk’s circumference, or 2nr. Finding the area of the
triangle yields A = Y4(r)(2nr) = wr?, which is therefore the area of the circle as well. This dissection is
Cavalieri-like in the sense that we are pairing equal lengths in the circle and triangle as we sweep
radius values from 0 to .

r



Optimization

One of the most common objectives in both applied and pure mathematics is optimization: finding
the maximum or minimum value for a function, steps needed in an algorithm, etc. CAD is a tool for
engineering and design for which optimization is ever-present. Can we make this as well, but with
less material? Stronger, but not heavier? More aesthetically pleasing while still affordable and
effective? In traditional secondary school curricula, optimization typically first appears in calculus,
but there are many other mathematical tools for optimization, and even standard calculus fare can
be solved for specific cases numerically or graphically well before students know the derivative.
See the Making Math Algebra-Equations section for materials on Linear Programming, which

utilizes so many introductory algebra skills in powerful and exciting ways, and the Algebra-
Functions section for materials on optimizing polynomials and other functions graphically.

Activity 3: In class, give each student twenty to thirty centimeter cubes and ask them to make a
rectangular solid (a box with no holes or empty interior) that uses all of them and report out on
what dimensions were possible. Students with a prime number of cubes will only be able to line
them all up. This question helps students connect the factors of a number with the dimensions
possible when that value is a volume.

Next, ask them to make the shape with the smallest possible surface area (no longer limited to
rectangular solids). Remind them to count the faces on the bottom that they can’t see (but not the
internal faces that are adjacent to other cubes). Have them record their structures and the surface
areain atable. After students have had time to explore, have them report out on their strategies
and observations for minimizing surface area.

Finally, ask them which shape has the greatest possible surface area. In all cases, it should be
snake-like with all cubes touching at most two others.

Once you have done the above, have students pick up with the second page of the Optimization
Activities.
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